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What are the Kernel and the Image?



What are the Kernel and the Image?

Definition
Let V and W be vector spaces, and T : V — W a linear transformation.

1. The kernel of T (sometimes called the null space of T) is defined to be
the set
ker(T) = {¥ € V | T(¥) = 0}.

2. The image of T is defined to be the set

im(T) = {T(¥) | ¥ € V).




Remark

If A is an m X n matrix and Ta : R™ — R™ is the linear transformation
induced by A, then

» ker(Ta) = null(A);
» im(Ta) =im(A).



Problem
Let T : P1 — R be the linear transformation defined by

T(p(x)) = p(1) for all p(x) € P;.

Find ker(T) and im(T).
Solution
ker(T) = {p(x) e P |p(l)=0}

{ax+b |Va,beR and a+b=0}
= {ax—a|VaeR}.

im(T) = {p(1) | p(x) € P1}
= {a+blax+bePi}
= {a+b|VabeR}
= R



Theorem

Let V and W be vector spaces and T : V. — W a linear transformation.
Then ker(T) is a subspace of V and im(T) is a subspace of W.

Proof. (that ker(T) is a subspace of V)
1. Let Oy and Ow denote the zero vectors of V and W, respectively.
T is a linear transformation = T(0v) = Ow = Ov € ker(T).
2. Let ¥1,¥2 € ker(T). Then T(¥1) = 0, T(¥2) = 0, and
T(Vl + ‘72) = T(Vl) + T(\72) = 6+ 62 6

Thus V1 + Vo € ker(T)
3. Let ¥; € ker(T) and let k € R. Then T(¥;) = 0, and

=,

T(k¥1) = kT(¥1) = k(0) = 0.

Thus k¥, € ker(T).
By the Subspace Test, ker(T) is a subspace of V.



Proof. (that im(T) is a subspace of W)
1. Let Oy and Ow denote the zero vectors of V and W, respectively.
T is a linear transformation = T(0v) = Ow = Ow € im(T).
2. Let wi, w2 € im(T). Then there exist V1, V2 € V such that T(v1) = w1,
T(V2) = Wo, and thus

W1 + Wo = T(\_/"1) + T(\_;Q) = T(\_fl —|—\_f'2)

Since V1 + V2 € V, W1 + w2 € im(T).
3. Let w1 € im(V) and let k € R. Then there exists v1 € V such that
T(\_f'l) = \37'1, and
kwy = kT(¥1) = T(k¥1).
Since kv; € V, kw; € im(T).
By the Subspace Test, im(T) is a subspace of W. |



Definition

Let V and W be vector spaces and T : V — W a linear transformation.

1. The dimension of ker(T), dim(ker(T)) is called the nullity of T and is
denoted nullity(T), i.e.,

nullity(T) = dim(ker(T)).

2. The dimension of im(T), dim(im(T)) is called the rank of T and is
denoted rank (T), i.e.,

rank(T) = dim(im(T)).

Nullity of T Rank of T




Example

If A is an m X n matrix, then Ta : R* — R™ is a linear transformation and

im(Ta) = im(A) = col(A) ker(Ta) = null(A)

U I
rank (Ta) = dim(im(Ta)) nullity(Ta) = dim(null(A))
= dim(col(A)) = “4 of free parameters in Ax = 0"
= rank (A) =n —rank (A)
= dim(row(A))
T

‘ rank (A) + nullity(Ta) = dim(R")




Finding Bases of the Kernel and the Image



Finding bases of the kernel and the image

Example (continued)

For the linear transformation T defined by T : P1 — R
T(p(x)) = p(1) for all p(x) € P
we found that

ker(T) ={ax —a|aeR} and im(T)=R.
» ker(T) =span{(x — 1)} and dim(ker(T)) = 1 = nullity(T).

» im(T) = span{1} and dim(im(T)) = 1 = rank (T)

» Hence,
nullity(T) + rank (T) = dim(P1) = 2.



Problem
Let T : Ma2 — Mas be defined by

a b| | a+b b+4c a b
T{C d}_[c—l—d d+a]forall[c d}EMzz.

Then T is a linear transformation (you should be able to prove this). Find
a basis of ker(T) and a basis of im(T).

Solution
a b € ker(T). Then
c d ’

Tab_a+bb+c_00
¢c d| | c+d d+a | |0 0|

This gives us a system of four equations in the four variables a, b, c, d:

Suppose [

a+b=0
b+c=0
c+d=0

d4+a=0



Solution (continued)

This system has solution a = —t,b =t,c = —t,d =t for any t € R, and thus

ker(T):{[:E E] ’teR}zspanHj 1]}
o-{[ 2 1]}

Since B is an independent subset of M2z and span(B) = ker(T), B is a basis
of ker(T).

Let



Solution (continued)
As for im(T), notice that

. o a+b b+c
im(T) = {{c—i—d d—‘,—a}

= enilo Lo o L0 LT ]
Lo VLo s Lo LY VY

S is a dependent subset of Maz, but (check this yourselves)

o-{[4 SL12 T8 )

is an independent subset of S. Since span(C) = span(S) = im(T) and C is
independent, C is a basis of im(T).

a,b,c,dER}

Let

wn



Remark
dim(MQQ) =4
nullity(T) = dim(ker(T)) =1

rank (T) = dim(im(T)) = 3
I

nullity (T) 4 rank (T) = dim(Mag)



Surjections and Injections



Surjections and Injections

Definition
Let V and W be vector spaces and T : V — W a linear transformation.
1. T is onto (or surjective) if im(T) = W.

2. T is one-to-one (or injective) if,

TE) =T(W) W,weV =

<
I
=t

Example

Let V be a vector space. Then the identity operator on V, 1y, : V. — V| is
one-to-one and onto.
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Theorem

Let V and W be vector spaces and T : V — W a linear transformation.
Then T is one-to-one if and only if ker(T) = {0}.

Proof.
(=) Let v € ker(T). Then

Tis one-to-one = v=0 = kerT={0}
(<) Conversely, suppose that ker(T) = {0}, and let ¥, € V be such that
T(¥) = T(w).
Then T(¥) — T(W) = 0, and since T is a linear transformation
T(V—w) =0.

By definition, Vv — w € ker(T), implying that ¥ — w = 0. Therefore Vv = W,
and hence T is one-to-one.



Problem

Let T : My — R? be a linear transformation defined by

a b | | a+d a b
T[C d}—{b+c}forall{c d}GMm-

Prove that T is onto but not one-to-one.

Proof.

Let | * | €R2 Since T| = Y | =] % , T is onto.
y 0 0 y

1 0

0 -1
Theorem, T is not one-to-one.

Observe that [ } € ker(T), so ker(T) # {022}. By the previous



Problem

Suppose U is an invertible m x m matrix and let T : My, — M, be
defined by
T(A) = UA for all A € Mun.

Then T is a linear transformation (this is left to you to verify). Prove that
T is one-to-one and onto.

Proof.

Suppose A, B € M, and that T(A) = T(B). Then UA = UB; since U is
invertible

U Y(UA) = U Y(UB)
(UT'U)A = (U 'U)B
LomA = I,uB
A = B

Therefore, T is one-to-one.



Proof. (continued)

To prove that T is onto, let B € My, and let A = U~'B. Then
T(A) = UA =U(U 'B) = (UU "B = IumB = B,

and therefore T is onto.



Problem
Let S : Pa — Maa be a linear transformation defined by

a+b a-+c

2 _
S(ax” +bx +c¢) = { b—c bac

} for all ax> +bx+c € Ps.

Prove that S is one-to-one but not onto.

Proof.
By definition,

ker(S) = {ax’ +bx+c€ P2 |a+b=0,a+c=0,b—c=0,b+c=0}.

Suppose p(x) = ax? + bx + ¢ € ker(S). This leads to a homogeneous system
of four equations in three variables:

1 0
0 1
1 -1
1 1

SO = =
o O OO
o o o
oo = O
o= OO
o O OO

Since the unique solution is a = b = ¢ = 0, ker(S) = {0}, and thus S is
one-to-one.



Proof. (continued)

To show that S is not onto, show that im(S) # Ps; i.e., find a matrix
A € My, such that for every p(x) € P2, S(p(x)) # A. Let

0 1
=l
and suppose p(x) = ax” + bx + ¢ € P is such that S(p(x)) = A. Then

a+b=0 at+c=1
b—c=0 b+c=2

Solving this system

11 010 1 0
10 1|1 0 — 1
01 —1]o| 7|0 110
01 1 |2 0o 1 1|2

Since the system is inconsistent, there is no p(x) € P2 so that S(p(x)) = A,
and therefore S is not onto. |



Problem ( One-to-one linear transformations preserve independent
sets )

Let V and W be vector spaces and T : V — W a linear transformation.
Prove that if T is one-to-one and {V1, Vo, ..., Vk} is an independent subset
of V, then {T(¥1), T(¥v2),...,T(Vk)} is an independent subset of W.

Proof.

Let Oy and Ow denote the zero vectors of V and W, respectively. Suppose
that
a1 T(V1) +a2T(V2) + - - - + a'T (Vi) = Ow

for some aj,as,...,ax € R. Since linear transformations preserve linear
combinations (addition and scalar multiplication),

T(a1¥1 + as¥a + - - - + ax¥i) = Ow.
Now, since T is one-to-one, ker(T) = {Ov}, and thus
a1vi + asVa + - + ax Vi = 6V~

However, {V1,V2,...,Vk} is independent, and hence a; = az = --- = ax = 0.
Therefore, {T(v1), T(¥2),...,T(¥k)} is independent. |



Problem ( Onto linear transformations preserve spanning sets )

Let V and W be vector spaces and T : V — W a linear transformation.
Prove that if T is onto and V = span{vi, Vo, ..., Vik}, then

W = span{T(v1), T(V2),..., T(Vk)}.

Proof.
Suppose that T is onto and let W € W. Then there exists Vv € V such that
T(V) = w. Since V = span{¥i, V2, ..., Vk}, there exist aj, ag, ...ar € R such

that V = a1V + asVa + - - - + ax V. Since T is a linear transformation,

W = T(V) = T(a1\71 + asVo + -+ ak\7k)

= a1T(V1) +a2T(V2) + - + a T (Vi),
ie., w € span{T(¥1), T(V2),..., T(Vk)}, and thus
W C span{T(v1), T(V2),..., T(Vk)}.
On the other hand,
T(#),T(¥2),...,T() €W = span{T(#1),T(¥2),..., T(¥)} C W.

Therefore, W = span{T(v1), T(V2),..., T(Vk)}. [ |



Suppose A is an m X n matrix. How do we determine if Ta : R" — R™ is
onto? How do we determine if Ta : R" — R™ is one-to-one?

Theorem

Let A be an m X n matrix, and Ta : R* — R™ the linear transformation
induced by A.

1. T4 is onto if and only if rank (A) = m.

2. Ta is one-to-one if and only if rank (A) = n.

Proof. (sketch)

1. Ta is onto if and only if im(Ta) = R™. This is equivalent to
col(A) = R™, which occurs if and only if dim(col(A)) = m, i.e.,
rank (A) = m.

2. ker(Ta) = null(A), and null(A) = {0} if and only if AX = 0 has the
unique solution ® = 0. Thus and row echelon form of A has a leading
one in every column, which occurs if and only if rank (A) = n. [ ]



The Dimension Theorem (Rank-Nullity Theorem)



The Dimension Theorem (Rank-Nullity Theorem)

Suppose A is an m X n matrix with rank r. Since im(Ta) = col(A),
dim(im(Ta)) = rank (A) =r.
We also know that ker(Ta) = null(A), and that dim(null(A)) = n —r. Thus,

dim(im(Ta)) 4+ dim(ker(Ta)) = n = dim R".

Theorem (Dimension Theorem (Rank-Nullity Theorem))

Let V and W be vector spaces and T : V — W a linear transformation. If
ker(T) and im(T) are both finite dimensional, then V is finite dimensional,
and

dim (V) = dim(ker(T)) + dim(im(T)).

Equivalently, dim(V) = nullity(T) + rank (T).



imT -~

dim V' |

kerT dimimT

“‘ dimker T !

0 —————————— 0






Proof. (Outline)
Let w € im(T); then W = T(¥) for some Vv € V. Suppose

— —

{T(bl), T(ba), ... ,T(Br)}

is a basis of im(T), and that

{f“l,ﬂ,.l.fk}

is a basis of ker(T). We define
B= {Bl,gg,...,Br,Fl,FQ,...,Fk} .

To prove that B is a basis of V, it remains to prove that B spans V and
that B is linearly independent.

Since B is independent and spans V, B is a basis of V, implying V is finite
dimensional (V is spanned by a finite set of vectors). Furthermore,
Bl =r+Kk, so

dim(V) = dim(im(T)) + dim(ker(T)).



Remark

1. It is not an assumption of the theorem that V is finite dimensional.
Rather, it is a consequence of the assumption that both im(T) and
ker(T) are finite dimensional.

2. As a consequence of the Dimension Theorem, if V is a finite
dimensional vector space and either dim(ker(T)) or dim(im(T)) is
known, then the other can be easily found.

Example

Let V and W be vector spaces and T : V. — W a linear transformation. If V
is finite dimensional, then it follows that

dim(ker(T)) < dim(V) and dim(im(T)) < dim(V).



Problem

For a € R, recall that the linear transformation E, : P, — R, the evaluation
map at a, is defined as

Ea(p(x)) = p(a) for all p(x) € Pn.
Prove that E, is onto, and that
B={(x—a),(x—a)’ (x—a)’,...,(x—a)"}

is a basis of ker(E,).



Proof.

Let t € R, and choose p(x) =t € Pn. Then p(a) =t, so Ea(p(x)) = t, i.e.,
E. is onto.

By the Dimension Theorem,
n+ 1= dim(P,) = dim(ker(Ea.)) + dim(im(E.)).

Since E, is onto, dim(im(E,)) = dim(R) = 1, and thus dim(ker(E,)) = n.
It now suffices to find n independent polynomials in ker(E,).
Note that (x —a)l € ker(E,) for j =1,2,...,n, so B C ker(E,).

Furthermore, B is independent because the polynomials in B have distinct
degrees.

Since |B| = n = dim(ker(E,)), B spans ker(E,).

Therefore, B is a basis of ker(E,).



Theorem

Let V and W be vector spaces, T : V. — W a linear transformation, and
B = {}317627 LR 7Er>gr+1>gr+2> oo 7];11}

a basis of V with the property that {Br+17 Br+27 e Bn} is a basis of
ker(T). Then
{T(Bl), T(b2),. .. ,T(Br)}

is a basis of im(T), and therefore r = rank (T).

Remark ( How is this useful? )

Suppose V and W are vector spaces and T : V — W is a linear
transformation. If you find a basis of ker(T), then this may be used to find
a basis of im(T): extend the basis of ker(T) to a basis of V; applying the
transformation T to each of the vectors that was added to the basis of
ker(T) produces a set of vectors that is a basis of im(T).



Problem

Let A = [ (1) (1) } ;and let T : Mag — Ma2 be a linear transformation

defined by
T(X) = XA — AX for all X € Mao.

Find a basis of ker(T) and a basis of im(T).

Solution

First note that by the Dimension Theorem,

dim(ker(T)) + dim(im(T)) = dim(Ma2) = 4.
}. Then

AX — XA

=
s
I



Solution (continued)

If X € ker(T), then T(X) = 022 so

c—b=0 a=s
d—a= b=
a=0 — for s,t € R.
a—d=0 c=t
b—c=0 d=s

Therefore,

([ 1]
o {[3 202 2]

Since B is independent and spans ker(T), By is a basis of ker(T).

Let



Solution (continued)

To find a basis of im(T), extend the basis of ker(T) to a basis of Mas: here
is one such basis

Therefore,

S R (A )

is a basis of im(T). [ ]
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